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Abstract

In the present paper, we will concern ourselves with the extended phase-
space quantum mechanics of particles which have both bosonic and fermionic
degrees of freedom, i.e., the quantum field theory in (0 + 1) dimensions in q-
(position) and p-(momentum) spaces, exhibiting supersymmetry. We present
(N = 2) realization of extended supersymmetry algebra and discuss the vacuum
energy and topology of super-potentials. Shape invariance of exactly solvable
extended SUSY potentials allows us to obtain analytic expressions for the entire
energy spectrum of an extended Hamiltonian with, for example, Scarf potential
without ever referring to an underlying differential equation.

PACS numbers: 03.65.−w, 03.65.Fd, 03.65.Ta, 05.30.−d, 11.30.Pb

1. Introduction

From its historical development, the phase-space quantization is constructed on the premises
that p and q are independent variables. In reducing the theory to that of Schrödinger or
Heisenberg, the standard ordering emerges as the rule of game. However, if one conjectures to
keep the symmetry between canonical coordinates and momenta in the process of quantization,
at once, one may arrive at state functions in a phase-space representation. But this aspect of
statistical quantum mechanics which deserves further investigation, unfortunately, has attracted
little attention in subsequent developments.

The purpose of the papers [1, 2] is to fill this gap and to illustrate the usefulness of this
perspective. In [1], it was observed that the concept of an extended Lagrangian, L(p, q, ṗ, q̇)

in phase space allows a subsequent extension of Hamilton’s principle to actions minimum
along the actual trajectories in (p, q), rather than in q space. This extension, in turn, allows a
definition of ‘second’ momenta πp = δL/δṗ and πq = δL/δq̇, and a subsequent introduction
of an extended phase space (p, q, πp, πq) and of an extended Hamiltonian, Hext(p, q, πp, πq).
In particular, vanishing of πq or πp is the condition for p and q to constitute a canonical pair.
In the language of statistical quantum mechanics, this choice picks up a pure state (actual
path). Otherwise, one is dealing with a mixed state (virtual path).
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This simple formalism manifests its practical and technical virtue in the proposed
canonical quantization in (p, q) space. It was first of all the unifying aspect that at once
provides a framework for quantum statistical mechanics, for the classical statistical mechanics
(Liouville’s equation), for the conventional quantum mechanics as a special case, for von
Neumann’s density matrix and its equation of evolution as its inevitable corollaries. Wigner’s
[3] distributions and the equation satisfied by them are also obtained from those of [1] by an
appropriate canonical transformation in the proposed (p, q, πp, πq) space. Further conceptual
and practical merits of the formalism are demonstrated by treatment of Bloch’s equation,
partition functions for simple harmonic and linear potentials etc.

There is another line of reasoning which supports the side of extended phase-space
formulation. In [2], we addressed the question of extended phase-space stochastic quantization
of Hamiltonian systems with first class holonomic constraints and have proved that Lagrange’s
method of indeterminate multipliers yields the quantization of constrained systems in the
stochastic quantization method. This in a natural way results in the Faddeev–Popov
conventional path-integral measure for gauge systems.

On the other hand, for more than four decades, the inspiring idea of supersymmetry
(SUSY) [4, 5] has led to new insights in a quantum field theory which unifies bosons and
fermions, in particular SUSY quantum mechanics [6–10]. All this variety prompts us in the
present paper to continue this program towards the supersymmetrization and, thus, to address
the extended phase-space quantum mechanics of particles with odd degrees of freedom. This
allows us to amplify and substantiate the assertions made in [1, 2].

This paper has been organized as follows. In the first part (sections 2 and 3), we give the
appropriate definition of the extended phase-space SUSY quantum mechanical system and
show how to construct the (N = 2)-SUSY algebra. In the second part (sections 4 and 5), we
explore the vacuum energy and topology of super-potentials, and deal with the shape invariance
of exactly solvable SUSY potentials. As an application, we obtain analytic expressions for the
entire energy spectrum of extended Hamiltonian with Scarf potential without ever referring to
the underlying differential equation. An implicit summation on repeated indices and the units
(h̄ = c = 1) are assumed throughout this paper.

2. SUSY in the extended phase-space quantum mechanical system

Consider a dynamical system with N degrees of freedom described by the 2N coordinates
q = (q1, . . . , qN) and momenta p = (p1, . . . , pN) and a Lagrangian Lq(q, q̇) in q
representation and the corresponding Lp(p, ṗ) in p representation. In the framework of
the proposed extended phase-space formalism of [1], the extended Lagrangian is written as

Lext(p, q, ṗ, q̇) = −q̇ipi − qiṗi + Lq + Lp, (1)

where p and q are independent and not, in general, canonical pairs. A dot will indicate
differentiation with respect to t. The independent nature of p and q gives the freedom
of introducing a second set of canonical momenta for both p and q through the extended
Lagrangian

πqi
= ∂Lext

∂q̇i

= ∂Lq

∂q̇i

− pi, πpi
= ∂Lext

∂ṗi

= ∂Lp

∂ṗi

− qi.

One may now define an extended Hamiltonian

Hext(p, q, πp, πq) = πqi
q̇i + πpi

ṗi − Lext(p, q, ṗ, q̇) = H(p + πq, q) − H(p, q + πp), (2)

where H(p, q) = piq̇i − Lq = qiṗi − Lp is the conventional Hamiltonian of the system.
Here, p and q will be considered as independent c-number operators on the integrable complex
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function χ(q, p). For πp and πq , however, the differential operators and commutation brackets
will be borrowed from the conventional quantum mechanics

πqi
= −i

∂

∂qi

, [πqi
, qj ] = −iδij , πpi

= −i
∂

∂pi

, [πpi
, pj ] = −iδij . (3)

Note also the following

[pi, qj ] = [pi, pj ] = [qi, qj ] = [πpi
, πqj

] = [πpi
, πpj

] = [πqi
, πqj

] = 0. (4)

By the virtue of equations (3) and (4), Hext is now an operator on χ . Along the trajectories
in (p, q) space, however, it produces the state functions, χ(p, q, t), via the following
Schrödinger-like equation:

i
∂

∂t
χ = Hextχ. (5)

Solutions of equation (5) are

χ(q, p, t) = aαβψα(q, t)φ∗
β(p, t) e−ipq, (6)

where a = a†, positive definite, tr a = 1 and ψα and φ∗
α are the solutions of the conventional

Schrödinger equation in q and p representations, respectively. The normalized χ is a physically
acceptable solution. See [1] for further details.

Following a general prescription of SUSY quantum mechanics [6, 7], we call an
extended phase-space quantum mechanical system characterized by an extended Hamiltonian
Hext acting in some Hilbert space H supersymmetric if there exist self-adjoint operators
Qi = Q

†
i , i = 1, 2, . . . , N, called supercharges, which also act on states in H and fulfill the

following SUSY algebra:

{Qi,Qj } = QiQj + QjQi = 2Hextδij ,

[Qi,Hext] = QiHext − HextQi = 0, i, j = 1, . . . , N.
(7)

Pursuing the analogy with these ideas in outlined here approach let a self-adjoint operator
P = P † be Witten operator or Witten parity, which anticommutes with the supercharges, and
therefore commutes with an extended Hamiltonian, and whose square is equal to the identity
[8]

{Qi, P } = 0, [Hext, P ] = 0, P 2 = 1. (8)

This operator allows us to introduce the notion of bosonic and fermionic states independently
of an underlying space-time symmetry. The Witten parity can also be written in the form
P = (−1)nF where nF is the fermion-number operator. Therefore, eigenstates of P with
eigenvalue −1 correspond to fermions and those with +1 correspond to bosons. In accordance,
the bosonic HB- and fermionic HB- subspaces read

HB = {χ ∈ H|Pχ >= +χ}, HF = {χ ∈ H|Pχ >= −χ}. (9)

Hence, any state χ ∈ H can be decomposed into its bosonic and fermionic components. The
Hilbert space may be written as a product space H = H0 ⊗ C2, and thus, the Witten operator
is represented by the third Pauli matrix σ3:

P = 1 ⊗ σ3 =
(

1 0
0 −1

)
. (10)

It will be more appropriate to use the notion spin-up and spin-down states (of a fictitious
spin- 1

2 particle with mass m > 0 moving along the d-dimensional Euclidean line Rd )
instead of bosonic and fermionic states, respectively. Having in addition only Cartesian
degrees of freedom H0 is given by the space of square-integrable functions over the
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Rd ,H0 = L2(Rd) ⊗ L2(Rd), d ∈ N. The SUSY has also implications on the spectral
properties of the extended Hamiltonian Hext. First of all, we note Hext = Q2

i � 0, that is, the
extended Hamiltonian has only non-negative eigenvalues. Suppose that χr is an eigenstate
of Hext with a positive eigenvalue Er > 0. Then it follows immediately from the algebra
equation (7) that

χ̃r (q, p) = 1√
Er

Qiχr(q, p), i = 1, 2 . . . , N, (11)

is also an eigenstate with the same positive eigenvalue. Hence, all positive-energy eigenstates
occur in spin-up (boson) spin-down (fermion) pairs. Actually, a multiplicity of degeneracy of
the levels of Hamiltonian Hext with the energy E equals to a dimension of invariant subspace
with respect to the action of all the Qi. If E = 0, then the corresponding subspace is one
dimensional—a level of zero point energy.

In general, the superalgebra equation (7) defines the Clifford algebra with the basis of
qi = Qi√

E
for nonzero-energy levels of Hext, which is a key point in the SUSY theories. Due

to it a definition of the multiplicity of degeneracy of the energy levels reduced to a definition
of a dimension of the representations of the Clifford algebra, which is well known. For the
even and odd number N, a dimension of the representation of Clifford algebra is given as
ν = 2n = 2[N/2], where [. . .] means the integer part, namely the ν defines a number of states
in given supermultiplet.

3. The (N = 2)-SUSY in extended phase space

In constructing a particular (N = 2) realization of the SUSY algebra equation (7) in the
Hilbert space

H = H0 ⊗ C2 = [L2(R) ⊗ L2(R)] ⊗ C2, (12)

following [8] let us first introduce a bosonic operator B± in q and p representations and a
fermionic operator f̂ :

Bq± : L2(R) → L2(R), Bq± = [p + πq ± iW(q)],

Bp± : L2(R) → L2(R), Bp± = [q + πp ± iV (p)],
(13)

and

f̂ : C2 → C2, f̂ = 1
2 [ψ̂+, ψ̂−]. (14)

As in canonical quantum mechanics, in expressions (13) and (14), the observables (πq, q) and
(πp, p) are usual bosonic momentum and coordinate operators respectively in q and p spaces,
while ψ̂± are two real fermionic creation and annihilation nilpotent operators describing the
fermionic variables, W(q) : R → R and V (p) : R → R are the piecewise continuously
differentiable functions called SUSY potentials. The bosonic operators can, in the (q, p)

representation, be taken in the usual form of equation (3). The ψ̂±, having anticommuting
c-number eigenvalues, imply

ψ̂± =
√

1
2 (ψ̂1 ± iψ̂2), {ψ̂α, ψ̂β} = δαβ, {ψ̂+, ψ̂−} = 1, ψ̂2

± = 0. (15)

They can be represented by finite dimensional matrices ψ̂± = σ±,

ψ̂+ = σ + =
(

0 1
0 0

)
, ψ̂− = σ− =

(
0 0
1 0

)
, f̂ = 1

2
σ3, (16)

where σ± = σ1±iσ2
2 denote the usual raising and lowering operators for the eigenvalues of

σ3. The fermionic operator, equation (14), commutes with the Hext and is diagonal in this
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representation with conserved eigenvalues ± 1
2 . Due to it, the wavefunctions become two-

component objects:

χ(q, p) =
(

χ+1/2(q, p)

χ−1/2(q, p)

)
=

(
χ1(q, p)

χ2(q, p)

)
=

(
ψ1(q)φ1(p)

ψ2(q)φ2(p)

)
, (17)

where the states ψ1,2(q), φ1,2(p) correspond to the fermionic quantum number f = ± 1
2 ,

respectively, in q and p spaces.
Let us now to deal with an abstract space of the eigenstates of the conjugate operator

ψ̂± having anticommuting c-number eigenvalues. Suppose |00−〉 is the normalized zero-
eigenstate of q̂ and ψ̂−:

q̂|00−〉 = 0, ψ̂−|00−〉 = 0. (18)

The state |00+〉 can be defined by

|00+〉 = ψ̂+|00−〉, (19)

then

ψ̂+|00+〉 = 0, ψ̂−|00+〉 = |00−〉. (20)

Taking into account that ψ̂
†
± = ψ̂∓, we get

〈∓00|ψ̂± = 0, 〈∓00|ψ̂∓ = 〈±00|. (21)

We may introduce the notation α, β, . . . for the anticommuting eigenvalues of ψ̂±. Consistency
requires

αψ̂± = −ψ̂±α, α|00±〉 = ±|00±〉α. (22)

The eigenstates of q̂, ψ̂− can be constructed as

|qα−〉 = e−iqp̂−αψ̂+ |00−〉, (23)

and thus,

q̂|qα−〉 = q|qα−〉, ψ̂−|qα−〉 = α|qα−〉. (24)

Then, the π̂q and ψ̂+ eigenstates are obtained by Fourier transformation:

|qβ+〉 = −
∫

dα eαβ |qα−〉, |πqα±〉 = −
∫

dq eiqπq |qα±〉,

|pβ+〉 = −
∫

dα eαβ |pα−〉, |πpα±〉 = −
∫

dp eipπp |pα±〉,
(25)

which gives

π̂q |πqα±〉 = πq |πqα±〉, ψ̂+|(q, πq)β+〉 = β|(q, πq)β+〉,
π̂p|πpα±〉 = πp|πpα±〉, ψ̂+|(p, πp)β+〉 = β|(p, πp)β+〉. (26)

This incorporated into the continuity of the spectrum is designed to yield

〈±α∗q|q ′β±〉 = eαβδ(q − q ′), 〈∓α∗q|q ′β±〉 = ∓δ(α − β)δ(q − q ′),

〈±α∗p|p′β±〉 = eαβδ(p − p′), 〈∓α∗p|p′β±〉 = ∓δ(α − β)δ(p − p′),

〈±α∗πq |qβ±〉 = eαβ e−iqπq , 〈∓α∗πq |qβ±〉 = ∓δ(α − β) e−iqπq ,

〈±α∗πp|pβ±〉 = eαβ e−ipπp , 〈∓α∗πp|pβ±〉 = ∓δ(α − β) e−ipπp ,

(27)

where the anticommuting δ function is defined by∫
d βδ(β − α)ϕ(β) = ϕ(α), δ(β − α) = −δ(α − β). (28)
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The following completeness relations hold:

−
∫

dα dq|qα±〉〈∓α∗q| = 1, −
∫

dα
dπq

2π
|πqα±〉〈∓α∗πq | = 1,

−
∫

dα dp|pα±〉〈∓α∗p| = 1, −
∫

dα
dπp

2π
|πpα±〉〈∓α∗πp| = 1.

(29)

The operators equations (13) and (14) allow us consequently to define a pair of appropriate
nilpotent supercharges (for such a particle, with unit mass)

Qq+ = Bq+ ⊗ ψ̂+ =
(

0 Bq+

0 0

)
, Qq− = Bq− ⊗ ψ̂− =

(
0 0

Bq− 0

)
,

Qp+ = Bp+ ⊗ ψ̂+ =
(

0 Bp+

0 0

)
, Qp− = Bp− ⊗ ψ̂− =

(
0 0

Bp− 0

)
,

(30)

which obey the required relations {Qq±,Qq±} = 0 = {Qp±,Qp±}. The operators Bq± can be
presented as Bq± = Bq1 ± iBq2, where Bq1 and Bq2 are the Hermitian operators. Accordingly,
the operators Qq1 and Qq2 read

Qq1 = Qq+ + Qq− = Bq1σ1 − Bq2σ2,

Qq2 = −i(Qq+ − Qq−) = Bq1σ2 + Bq2σ1,
(31)

and similar relations hold for the operators Qp1 and Qp2. It is easily verified that Qq± are the
generators of SUSY transformations between q and ψ̂ , as well as Qp± are the generators of
SUSY transformations between p and ψ̂ :

[Qq±, q] = −iψ̂±, [Qq±, πq] = ∓W ′
q(q)ψ̂±,

{Qq±, ψ̂∓} = p + πq ± iW(q), {Qq∓, ψ̂∓} = 0,
(32)

and

[Qp±, p] = −iψ̂±, [Qp±, πp] = ∓V ′
p(p)ψ̂±,

{Qp±, ψ̂∓} = q + πp ± iV (p), {Qp∓, ψ̂∓} = 0.
(33)

In accordance with equation (31), the SUSY Hamiltonians in q and p representations read

2Hq = Q2
q1 = Q2

q2 = {Qq+,Qq−} = {Bq+, Bq−} + [Bq+, Bq−]σ3,

2Hp = Q2
p1 = Q2

p2 = {Qp+,Qp−} = {Bp+, Bp−} + [Bp+, Bp−]σ3.
(34)

Along the trajectories in (p, q) space, however, this produces the extended Hamiltonian Hext:

Hext =
(

H+ 0
0 H−

)
= Hq − Hp =

(
Hq+ − Hp+ 0

0 Hq− − Hp−

)
, (35)

where

Hq =
(

Hq+ 0
0 Hq−

)
= 1

2

(
Bq+Bq− 0

0 Bq−Bq+

)
,

Hp =
(

Hp+ 0
0 Hp−

)
= 1

2

(
Bp+Bp− 0

0 Bp−Bp+

)
.

(36)

Equations (35) and (36) incorporating with equation (13) yield

Hext = 1
2 [(p + πq)

2 − (q + πp)2 + W 2(q) − V 2(p)

− iσ3(p + πq)W(q) + iσ3(q + πp)V (p)]. (37)

6
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Let χr(q, p) be an eigenfunction of Hext corresponding to the eigenvalue Er,

Hextχr(q, p) = Erχr(q, p), (38)

where by virtue of equation (6), the χr(q, p) (for combined index r ≡ (α, β)) is in the form

χr(q, p) = χr(q, p) e−ipq ≡ χ(α,β)(q, p) = ψα(q)φ∗
β(p) e−ipq . (39)

The exponential factor is a consequence of the total time derivative, −d(qp)/dt, in
equation (1). It is easily verified that

(p + πq)χr(q, p) = (πqχr(q, p)) e−ipq, (40)

and so on. Substitution of equations (39) and (40) in equation (38) gives the stationary states
of the system which are the normalizable solutions of the Schrödinger equation. With this
observation we arrive at

H extχr(q, p) = Erχr(q, p), (41)

provided by the reduced Hamiltonian, H ext,

H ext =
(

H + 0
0 H−

)
= 1

2

[
π2

q − π2
p + W 2(q) − V 2(p) − σ3(W

′
q(q) − V ′

p(p))
]
. (42)

Along the actual trajectories in q space, equation (42) reproduces the results obtained in [7].
A prime will indicate the differentiation with respect either to q or p spaces. From now on,
we replace Hext by H ext and χr(q, p) by χr(q, p), respectively, and retain former notational
conventions. This realization characterizes a non-interacting point particle of mass m = 1
moving along the real line in (q, p) space under influence of the external scalar potential

U± = Uq± − Up± ≡ W 2(q) − V 2(p) ∓ (W ′
q(q) − V ′

p(p)). (43)

The time evolution of the state |t〉 is given

χ−(qαpβt) = −
∫

dα′ dq ′ dβ ′ dp′K(qαpβt |q ′α′p′β ′t ′), (44)

provided by the kernel

K(qαpβt |q ′α′p′β ′t ′) = 〈+qα∗pβ∗| e−iHext(t−t ′)|q ′α′p′β ′〉, (45)

which can be evaluated by the path integral. Actually, an alternative approach to describe the
state space and dynamics of the extended phase-space quantum system is by the path integral
[2], which reads

Kff ′(qpt |q ′p′t ′) = 〈qpf | e−iHext(t−t ′)|q ′p′f ′〉, (46)

where the extended SUSY Hamiltonian, given by equation (42), can be represented as

Hext = 1
2

(
π2

q + W 2(q) + iW ′
q(q)[ψ̂1, ψ̂2]

) − 1
2

(
π2

p + V 2(p) + iV ′
q(p)[ψ̂1, ψ̂2]

)
. (47)

To infer the extended Hamiltonian equation (47) equivalently one may start from the
c-number extended Lagrangian of extended phase-space quantum field theory in (0 + 1)

dimensions in q and p spaces:

Lext(p, q, ṗ, q̇) = −q̇p − qṗ +
1

2

[(
dq

dt

)2

− W 2(q) + ψT

(
i

d

dt
+ W ′

q(q)σ2

)
ψ

]

+
1

2

[(
dp

dt

)2

− V 2(p) + ψT

(
i

d

dt
+ V ′

p(p)σ2

)
ψ

]
, (48)

7
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where ψ = (
ψ1
ψ2

)
, the components of which are to be interpreted as anticommuting c-numbers.

Equation (48) can be re-written as

Lext(p, q, ṗ, q̇) = −q̇p − qṗ +
1

2

[(
dq

dt

)2

− W 2(q)

]
+ f W ′

q(q)

+
1

2

[(
dp

dt

)2

− V 2(p)

]
+ f V ′

p(p). (49)

With the Hamiltonian Hext, the path integral equation (46) is diagonal:

Kff ′(qpt |q ′p′t ′) = Kff ′(qt |q ′t ′)Kff ′(pt |p′t ′)

= δff ′

∫ q

q ′
Dq

∫ p

p′
Dp exp

(
i
∫ t

t ′
Lext(p, q, ṗ, q̇) dt

)
. (50)

Knowing the path integral equation (50), it is sufficient to specify the initial wavefunction
χf (q ′, p′, t ′) to obtain all possible information about the system at any later time t, by

χf (q, p, t) =
∑
f ′

∫
dq ′dp′Kff ′(qpt |q ′p′t ′)χf ′(q ′, p′, t ′), (51)

with χ±1/2(q, p, t) = χ1,2(q, p, t) (equation (17)).

4. The vacuum energy and the topology of superpotential

The supersymmetry equation (7) of quantum system is said to be a good symmetry (good
SUSY) if the ground-state energy of Hext vanishes. In the other case, infspecHext > 0, SUSY
is said to be broken. Note that under the replacement of SUSY potentials, W → −W and
V → −V, (U± → −U∓), the roles of the two Hamiltonians H+ and H− are interchanged.
Hence, the sign of the SUSY potentials may be fixed by some convention. For good SUSY
the ground state χ0 of Hext either belongs to H+ or H−

H±χ±
0 = 0 ⇔ B∓χ±

0 = 0. (52)

As far as Hq± and Hp± are independent, equation (52) gives(
d

dq
± W(q)

)
ψ±

0 (q) = 0,

(
d

dp
± V (p)

)
φ±

0 (p) = 0, (53)

provided with χ±
0 (q, p)〉 ≡ ψ±

0 (q)φ±
0 (p), and〈

q
∣∣ψ±

0

〉 ≡ ψ±
0 (q),

〈
p
∣∣φ±

0

〉 ≡ φ±
0 (p). (54)

The functions ψ±
0 (q) and φ±

0 (p) have to be square-integrable for SUSY to be a good symmetry.
This requirement puts conditions on the SUSY potentials:∫ ∞

0
W(q ′) dq ′ → ∞ at q → ±∞ for ψ+

0 ,∫ ∞

0
W(q ′) dq ′ → −∞ at q → ±∞ for ψ−

0 ,

(55)

and similar ones hold for V (p). Depending on the asymptotic behavior of the SUSY potentials
one of the two functions χ±

0 will be normalizable (good SUSY) or both are not normalizable
(broken SUSY). For continuous SUSY potentials U±(p, q) the functions W(q) and V (p)

must have an odd number of zeros (counted with their multiplicity) for SUSY to be good.
A continuous SUSY potentials with an even number of zeros necessarily leads to a broken
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SUSY as the functions equation (55) will be not square-integrable. Consequently, if W(q)

and V (p) have a well-defined parity, and odd W(q) and V (p) lead to good SUSY, whereas
an even W(q) and V (p) break SUSY:

W(−q) = −W(q) ⇒ Uq±(−q) = Uq±(q) (SUSY and parity are

good in q subspace),

W(−q) = W(q) ⇒ Uq±(−q) �= Uq±(q) (SUSY and parity are

broken in q subspace),

(56)

and correspondingly the similar conditions hold for V (p) and Uq±(p). The spectra of H+ and
H− are related as follows:

spec(H−)/{0} = spec(H+) (good SUSY),

spec(H−) = spec(H+) (broken SUSY).
(57)

Clearing up this situation, the Witten index is turned out to be one of the useful tools which,
according to the Atiyah–Singer index theorem [11] associates with the operator index and
depends only on the asymptotic values of SUSY potentials. This is a topological characteristic
and does not vary with the variation of the parameters of theory. Thus, the Witten index reads

(β) = tr(P e−βHext) = tr(P e−β(Hq−Hp)), β > 0. (58)

For a pure point spectrum of Hext this index is the difference of the number of spin-up states
(↑) and spin-down states (↓) with zero energy:

(β) = N↑(E = 0) − N↓(E = 0). (59)

Note that the factor e−βHext in equation (58) has only been introduced for the regularization
of the trace. The conditions of the positive-energy eigenstates cancel due to the pairwise
degeneracy mentioned above. For a continuous spectrum this is not the case as the spectral
densities for the spin-up and spin-down states are in general different due to which Witten
index becomes β dependent [12]. Therefore, for simplicity, we assume purely discrete spectra.
Then, equation (58) yields

 = indB = dim kerH− − dim kerH+

= dim kerHq− + dim kerHp+ − dim kerHq+ − dim kerHp−. (60)

Introducing in equation (60) a set of Hq and Hp upon reduction to the q or p spaces makes
provisions for equation (59), which incorporated into equation (55) are designed to yield

 = 1
2 [sgnW(+∞) + sgnV (−∞) − sgnW(−∞) − sgnV (+∞)]. (61)

Hence for good SUSY, one has  = ±1 with the ground state belonging to H±. For broken
SUSY, one has  = 0. The generalized Witten index, , shows new features of the present
formulation over the well-known ordinary SUSY QM formalism. Actually, even the SUSY
was broken in q or p spaces, it can be still good in (q, p) space, or the SUSY was good in q
or p spaces, it can be broken in (q, p) space.

The spectral properties of H± are summarized in the following table:

 = +1 : E+
n = E−

n+1 > 0, E−
0 = 0,

 = −1 : E−
n = E+

n+1 > 0, E+
0 = 0,

 = 0 : E+
n = E−

n > 0,

(62)

where E±
n , n = 0, 1, 2 . . ., denotes the ordered set of eigenvalues of H± with E±

n < E±
n+1,

which, in turn, are dependent on spectra of Hq± and Hp±.
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5. A shape invariance of exactly solvable SUSY potentials

An extended Hamiltonian Hext can be treated as a set of two ordinary two-dimensional partner
Hamiltonians

H± = 1
2

[
π2

q − π2
p + U±(q, p)

]
. (63)

Due to SUSY they have the same energy spectra at arbitrary functions W(q) and V (p),
except the ground state of H− (defined in accordance with usual convention) which has no
corresponding state in the spectra of H+.

In [10], it was shown that a subset of the SUSY potentials for which the Schrödinger-
like equations are exactly solvable share an integrability conditions called shape invariance.
The partner potentials U±(q, p) equation (43) are called shape invariant if they satisfy an
integrability condition

U+(a, q, p) = U−(a1, q, p) + R(a), a1 = f (a), (64)

where a and a1 are a set of parameters that specify phase-space-independent properties of
the potentials, and the reminder R(a) is independent of (q, p). Although this looks like a
satisfactory state of affairs, we may not always be so fortunate to have such potentials at our
disposal. In fact a shape invariance is not the most general integrability condition as not all
exactly solvable potentials seem to be shape invariant [12].

Using the standard technique, we construct a series of Hamiltonians Hn, n = 0, 1, 2, . . . ,

Hn = 1

2

[
π2

q − π2
p + U−(an, q, p) +

n∑
k=1

R(ak)

]
, (65)

where an = f (n)(a) (n is the number of iterations). Comparing the spectra Hn and Hn+1, due
to equation (64), we obtain

Hn+1 = 1

2

[
π2

q − π2
p + U+(an, q, p) +

n∑
k=1

R(ak)

]
. (66)

We see that the Hamiltonians Hn and Hn+1 have the same energy spectra, except the ground
state of Hn, the energy of which as can be found from equation (65) is equal to

∑n
k=1 R(ak).

Going through Hn to Hn−1 and so on, we subsequently obtain the initial Hamiltonian
H0 = H− = 1

2

[
π2

q − π2
p + U−(a, q, p)

]
, the ground state of which is equal zero, but all

the other energy levels coincide with the lower levels of Hamiltonians Hn. Continuing along
this line, the entire energy spectrum of Hext is Ẽn = ∑n

k=1 R(ak). Hence the spectrum of
Hamiltonian with the potential U(a, q, p) = U−(a, q, p) + C(a) has the form

En = Ẽn + C(a) =
n∑

k=1

R(ak) + C(a). (67)

Instead of developing the full machinery here, we will illustrate this in passing in the following
example.

Example of Scarf potential. To demonstrate practical merits of the concept of shape invariance,
we now obtain analytic expressions for the entire energy spectrum in case of Scarf potential,

U(a, b, q, p) = Uq(a, b) − Up(b, p) = −a(a + 1)

2ch2q
+

b(b + 1)

2ch2p
, (68)

without ever referring to an underlying differential equation. In case at hand we have
W(q) = a th q and V (p) = b th p, hence

U±(a, b, q, p) = Uq±(a, q) − Up±(b, p) = −a(a ∓ 1)

2ch2q
+

a2

2
+

b(b ± 1)

2ch2p
− b2

2
. (69)
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This yields

a1 = f1(a) = a − 1; an = a − n; C1(a) = −a2

2
,

b1 = f2(b) = b − 1; bm = b − m; C2(b) = −b2

2
,

n∑
k=1

R1(ak) = a2 − a2
n

2
,

m∑
k=1

R2(bk) = b2 − b2
m

2
.

(70)

The entire energy spectrum of the Hext can be easily obtained as

Enm = Eqn − Epm = −a2
n

2
+

b2
m

2
= − (a − n)2

2
+

(b − m)2

2
. (71)

The shape invariance has an underlying algebraic structure of Lie algebras [10], which
transform the parameters of the potentials. Shape-invariance algebra in general is an
infinite dimensional. However, under some conditions they become finite dimensional. The
Hamiltonian of exactly solvable systems can be written as a linear or quadratic function of
an underlying algebra, and all the quantum states of these systems can be determined by the
independent group theoretical methods with a general change of parameters which involves
nonlinear extensions of Lie algebras [13]. A more detailed analysis and calculations on the
independent group theoretical methods with nonlinear extensions of Lie algebras in context of
extended phase-space formulation of quantum mechanics will be presented in another paper
to follow at a later date.

6. Conclusions

The theory we considered can be regarded as a quantum field theory in (0 + 1) dimensions
in q and p spaces, which exhibits supersymmetry. We construct the (N = 2) realization
of the extended phase-space SUSY algebra and discuss the vacuum energy and topology of
super-potentials. The question of spontaneously breaking of extended SUSY deserves further
investigation.

We demonstrate the merits of shape invariance of exactly solvable extended SUSY
potentials, which has underlying algebraic structure, by obtaining analytic expressions for the
entire energy spectrum of extended Hamiltonian with Scarf potential without ever referring to
underlying differential equation.
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[12] Freedman B and Cooper F 1985 Physica 15D 138
[13] Rocek M 1991 Phys. Lett. B 255 554

Curtright T et al 1991 J. Math. Phys. 32 676

12

http://dx.doi.org/10.1103/PhysRev.170.1586
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0370-1573(85)90023-7
http://dx.doi.org/10.1088/0305-4470/9/9/010
http://dx.doi.org/10.1016/0550-3213(81)90006-7
http://dx.doi.org/10.1016/0550-3213(82)90071-2
http://dx.doi.org/10.1103/RevModPhys.23.21
http://dx.doi.org/10.1016/0370-1573(94)00080-M
http://dx.doi.org/10.1016/0370-2693(91)90265-R
http://dx.doi.org/10.1063/1.529410

	1. Introduction
	2. SUSY in the extended phase-space quantum mechanical system
	3. The (N=2)-SUSY in extended phase space
	4. The vacuum energy and the topology of superpotential
	5. A shape invariance of exactly solvable SUSY potentials
	6. Conclusions
	Acknowledgments
	References

